\(\int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx\) [656]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 129 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \sin ^7(c+d x)}{7 d}+\frac {a \sin ^8(c+d x)}{8 d}-\frac {a \sin ^9(c+d x)}{3 d}-\frac {3 a \sin ^{10}(c+d x)}{10 d}+\frac {3 a \sin ^{11}(c+d x)}{11 d}+\frac {a \sin ^{12}(c+d x)}{4 d}-\frac {a \sin ^{13}(c+d x)}{13 d}-\frac {a \sin ^{14}(c+d x)}{14 d} \]

[Out]

1/7*a*sin(d*x+c)^7/d+1/8*a*sin(d*x+c)^8/d-1/3*a*sin(d*x+c)^9/d-3/10*a*sin(d*x+c)^10/d+3/11*a*sin(d*x+c)^11/d+1
/4*a*sin(d*x+c)^12/d-1/13*a*sin(d*x+c)^13/d-1/14*a*sin(d*x+c)^14/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2915, 12, 90} \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \sin ^{14}(c+d x)}{14 d}-\frac {a \sin ^{13}(c+d x)}{13 d}+\frac {a \sin ^{12}(c+d x)}{4 d}+\frac {3 a \sin ^{11}(c+d x)}{11 d}-\frac {3 a \sin ^{10}(c+d x)}{10 d}-\frac {a \sin ^9(c+d x)}{3 d}+\frac {a \sin ^8(c+d x)}{8 d}+\frac {a \sin ^7(c+d x)}{7 d} \]

[In]

Int[Cos[c + d*x]^7*Sin[c + d*x]^6*(a + a*Sin[c + d*x]),x]

[Out]

(a*Sin[c + d*x]^7)/(7*d) + (a*Sin[c + d*x]^8)/(8*d) - (a*Sin[c + d*x]^9)/(3*d) - (3*a*Sin[c + d*x]^10)/(10*d)
+ (3*a*Sin[c + d*x]^11)/(11*d) + (a*Sin[c + d*x]^12)/(4*d) - (a*Sin[c + d*x]^13)/(13*d) - (a*Sin[c + d*x]^14)/
(14*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a-x)^3 x^6 (a+x)^4}{a^6} \, dx,x,a \sin (c+d x)\right )}{a^7 d} \\ & = \frac {\text {Subst}\left (\int (a-x)^3 x^6 (a+x)^4 \, dx,x,a \sin (c+d x)\right )}{a^{13} d} \\ & = \frac {\text {Subst}\left (\int \left (a^7 x^6+a^6 x^7-3 a^5 x^8-3 a^4 x^9+3 a^3 x^{10}+3 a^2 x^{11}-a x^{12}-x^{13}\right ) \, dx,x,a \sin (c+d x)\right )}{a^{13} d} \\ & = \frac {a \sin ^7(c+d x)}{7 d}+\frac {a \sin ^8(c+d x)}{8 d}-\frac {a \sin ^9(c+d x)}{3 d}-\frac {3 a \sin ^{10}(c+d x)}{10 d}+\frac {3 a \sin ^{11}(c+d x)}{11 d}+\frac {a \sin ^{12}(c+d x)}{4 d}-\frac {a \sin ^{13}(c+d x)}{13 d}-\frac {a \sin ^{14}(c+d x)}{14 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.91 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a (525525 \cos (2 (c+d x))-105105 \cos (6 (c+d x))+21021 \cos (10 (c+d x))-2145 \cos (14 (c+d x))-1201200 \sin (c+d x)+300300 \sin (3 (c+d x))+180180 \sin (5 (c+d x))-51480 \sin (7 (c+d x))-40040 \sin (9 (c+d x))+5460 \sin (11 (c+d x))+4620 \sin (13 (c+d x)))}{246005760 d} \]

[In]

Integrate[Cos[c + d*x]^7*Sin[c + d*x]^6*(a + a*Sin[c + d*x]),x]

[Out]

-1/246005760*(a*(525525*Cos[2*(c + d*x)] - 105105*Cos[6*(c + d*x)] + 21021*Cos[10*(c + d*x)] - 2145*Cos[14*(c
+ d*x)] - 1201200*Sin[c + d*x] + 300300*Sin[3*(c + d*x)] + 180180*Sin[5*(c + d*x)] - 51480*Sin[7*(c + d*x)] -
40040*Sin[9*(c + d*x)] + 5460*Sin[11*(c + d*x)] + 4620*Sin[13*(c + d*x)]))/d

Maple [A] (verified)

Time = 1.28 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.68

method result size
derivativedivides \(-\frac {a \left (\frac {\left (\sin ^{14}\left (d x +c \right )\right )}{14}+\frac {\left (\sin ^{13}\left (d x +c \right )\right )}{13}-\frac {\left (\sin ^{12}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{11}\left (d x +c \right )\right )}{11}+\frac {3 \left (\sin ^{10}\left (d x +c \right )\right )}{10}+\frac {\left (\sin ^{9}\left (d x +c \right )\right )}{3}-\frac {\left (\sin ^{8}\left (d x +c \right )\right )}{8}-\frac {\left (\sin ^{7}\left (d x +c \right )\right )}{7}\right )}{d}\) \(88\)
default \(-\frac {a \left (\frac {\left (\sin ^{14}\left (d x +c \right )\right )}{14}+\frac {\left (\sin ^{13}\left (d x +c \right )\right )}{13}-\frac {\left (\sin ^{12}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{11}\left (d x +c \right )\right )}{11}+\frac {3 \left (\sin ^{10}\left (d x +c \right )\right )}{10}+\frac {\left (\sin ^{9}\left (d x +c \right )\right )}{3}-\frac {\left (\sin ^{8}\left (d x +c \right )\right )}{8}-\frac {\left (\sin ^{7}\left (d x +c \right )\right )}{7}\right )}{d}\) \(88\)
risch \(\frac {5 a \sin \left (d x +c \right )}{1024 d}+\frac {a \cos \left (14 d x +14 c \right )}{114688 d}-\frac {a \sin \left (13 d x +13 c \right )}{53248 d}-\frac {a \sin \left (11 d x +11 c \right )}{45056 d}-\frac {7 a \cos \left (10 d x +10 c \right )}{81920 d}+\frac {a \sin \left (9 d x +9 c \right )}{6144 d}+\frac {3 a \sin \left (7 d x +7 c \right )}{14336 d}+\frac {7 a \cos \left (6 d x +6 c \right )}{16384 d}-\frac {3 a \sin \left (5 d x +5 c \right )}{4096 d}-\frac {5 a \sin \left (3 d x +3 c \right )}{4096 d}-\frac {35 a \cos \left (2 d x +2 c \right )}{16384 d}\) \(164\)
parallelrisch \(\frac {a \left (-\sin \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+7 \sin \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )-21 \sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+35 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (127540 \cos \left (2 d x +2 c \right )+2145 \sin \left (7 d x +7 c \right )+15015 \sin \left (5 d x +5 c \right )+4620 \cos \left (6 d x +6 c \right )+33033 \sin \left (d x +c \right )+39039 \sin \left (3 d x +3 c \right )+37800 \cos \left (4 d x +4 c \right )+104600\right ) \left (\cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+7 \cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+21 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+35 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{61501440 d}\) \(171\)

[In]

int(cos(d*x+c)^7*sin(d*x+c)^6*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-a/d*(1/14*sin(d*x+c)^14+1/13*sin(d*x+c)^13-1/4*sin(d*x+c)^12-3/11*sin(d*x+c)^11+3/10*sin(d*x+c)^10+1/3*sin(d*
x+c)^9-1/8*sin(d*x+c)^8-1/7*sin(d*x+c)^7)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.99 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=\frac {8580 \, a \cos \left (d x + c\right )^{14} - 30030 \, a \cos \left (d x + c\right )^{12} + 36036 \, a \cos \left (d x + c\right )^{10} - 15015 \, a \cos \left (d x + c\right )^{8} - 40 \, {\left (231 \, a \cos \left (d x + c\right )^{12} - 567 \, a \cos \left (d x + c\right )^{10} + 371 \, a \cos \left (d x + c\right )^{8} - 5 \, a \cos \left (d x + c\right )^{6} - 6 \, a \cos \left (d x + c\right )^{4} - 8 \, a \cos \left (d x + c\right )^{2} - 16 \, a\right )} \sin \left (d x + c\right )}{120120 \, d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/120120*(8580*a*cos(d*x + c)^14 - 30030*a*cos(d*x + c)^12 + 36036*a*cos(d*x + c)^10 - 15015*a*cos(d*x + c)^8
- 40*(231*a*cos(d*x + c)^12 - 567*a*cos(d*x + c)^10 + 371*a*cos(d*x + c)^8 - 5*a*cos(d*x + c)^6 - 6*a*cos(d*x
+ c)^4 - 8*a*cos(d*x + c)^2 - 16*a)*sin(d*x + c))/d

Sympy [A] (verification not implemented)

Time = 4.78 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.43 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=\begin {cases} \frac {16 a \sin ^{13}{\left (c + d x \right )}}{3003 d} + \frac {8 a \sin ^{11}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{231 d} + \frac {2 a \sin ^{9}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{21 d} + \frac {a \sin ^{7}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{7 d} - \frac {a \sin ^{6}{\left (c + d x \right )} \cos ^{8}{\left (c + d x \right )}}{8 d} - \frac {3 a \sin ^{4}{\left (c + d x \right )} \cos ^{10}{\left (c + d x \right )}}{40 d} - \frac {a \sin ^{2}{\left (c + d x \right )} \cos ^{12}{\left (c + d x \right )}}{40 d} - \frac {a \cos ^{14}{\left (c + d x \right )}}{280 d} & \text {for}\: d \neq 0 \\x \left (a \sin {\left (c \right )} + a\right ) \sin ^{6}{\left (c \right )} \cos ^{7}{\left (c \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**7*sin(d*x+c)**6*(a+a*sin(d*x+c)),x)

[Out]

Piecewise((16*a*sin(c + d*x)**13/(3003*d) + 8*a*sin(c + d*x)**11*cos(c + d*x)**2/(231*d) + 2*a*sin(c + d*x)**9
*cos(c + d*x)**4/(21*d) + a*sin(c + d*x)**7*cos(c + d*x)**6/(7*d) - a*sin(c + d*x)**6*cos(c + d*x)**8/(8*d) -
3*a*sin(c + d*x)**4*cos(c + d*x)**10/(40*d) - a*sin(c + d*x)**2*cos(c + d*x)**12/(40*d) - a*cos(c + d*x)**14/(
280*d), Ne(d, 0)), (x*(a*sin(c) + a)*sin(c)**6*cos(c)**7, True))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.73 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {8580 \, a \sin \left (d x + c\right )^{14} + 9240 \, a \sin \left (d x + c\right )^{13} - 30030 \, a \sin \left (d x + c\right )^{12} - 32760 \, a \sin \left (d x + c\right )^{11} + 36036 \, a \sin \left (d x + c\right )^{10} + 40040 \, a \sin \left (d x + c\right )^{9} - 15015 \, a \sin \left (d x + c\right )^{8} - 17160 \, a \sin \left (d x + c\right )^{7}}{120120 \, d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/120120*(8580*a*sin(d*x + c)^14 + 9240*a*sin(d*x + c)^13 - 30030*a*sin(d*x + c)^12 - 32760*a*sin(d*x + c)^11
 + 36036*a*sin(d*x + c)^10 + 40040*a*sin(d*x + c)^9 - 15015*a*sin(d*x + c)^8 - 17160*a*sin(d*x + c)^7)/d

Giac [A] (verification not implemented)

none

Time = 0.47 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.26 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \cos \left (14 \, d x + 14 \, c\right )}{114688 \, d} - \frac {7 \, a \cos \left (10 \, d x + 10 \, c\right )}{81920 \, d} + \frac {7 \, a \cos \left (6 \, d x + 6 \, c\right )}{16384 \, d} - \frac {35 \, a \cos \left (2 \, d x + 2 \, c\right )}{16384 \, d} - \frac {a \sin \left (13 \, d x + 13 \, c\right )}{53248 \, d} - \frac {a \sin \left (11 \, d x + 11 \, c\right )}{45056 \, d} + \frac {a \sin \left (9 \, d x + 9 \, c\right )}{6144 \, d} + \frac {3 \, a \sin \left (7 \, d x + 7 \, c\right )}{14336 \, d} - \frac {3 \, a \sin \left (5 \, d x + 5 \, c\right )}{4096 \, d} - \frac {5 \, a \sin \left (3 \, d x + 3 \, c\right )}{4096 \, d} + \frac {5 \, a \sin \left (d x + c\right )}{1024 \, d} \]

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/114688*a*cos(14*d*x + 14*c)/d - 7/81920*a*cos(10*d*x + 10*c)/d + 7/16384*a*cos(6*d*x + 6*c)/d - 35/16384*a*c
os(2*d*x + 2*c)/d - 1/53248*a*sin(13*d*x + 13*c)/d - 1/45056*a*sin(11*d*x + 11*c)/d + 1/6144*a*sin(9*d*x + 9*c
)/d + 3/14336*a*sin(7*d*x + 7*c)/d - 3/4096*a*sin(5*d*x + 5*c)/d - 5/4096*a*sin(3*d*x + 3*c)/d + 5/1024*a*sin(
d*x + c)/d

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.72 \[ \int \cos ^7(c+d x) \sin ^6(c+d x) (a+a \sin (c+d x)) \, dx=\frac {-\frac {a\,{\sin \left (c+d\,x\right )}^{14}}{14}-\frac {a\,{\sin \left (c+d\,x\right )}^{13}}{13}+\frac {a\,{\sin \left (c+d\,x\right )}^{12}}{4}+\frac {3\,a\,{\sin \left (c+d\,x\right )}^{11}}{11}-\frac {3\,a\,{\sin \left (c+d\,x\right )}^{10}}{10}-\frac {a\,{\sin \left (c+d\,x\right )}^9}{3}+\frac {a\,{\sin \left (c+d\,x\right )}^8}{8}+\frac {a\,{\sin \left (c+d\,x\right )}^7}{7}}{d} \]

[In]

int(cos(c + d*x)^7*sin(c + d*x)^6*(a + a*sin(c + d*x)),x)

[Out]

((a*sin(c + d*x)^7)/7 + (a*sin(c + d*x)^8)/8 - (a*sin(c + d*x)^9)/3 - (3*a*sin(c + d*x)^10)/10 + (3*a*sin(c +
d*x)^11)/11 + (a*sin(c + d*x)^12)/4 - (a*sin(c + d*x)^13)/13 - (a*sin(c + d*x)^14)/14)/d